Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 440: 129743, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35963086

RESUMO

Over the past decade there has been an increasing concern on the presence of cytostatics (also known as anticancer drugs) in natural waterbodies. The conventional wastewater treatments seem not to be effective enough to remove them, and therefore new processes must be considered. This work investigates the performance of ozonation (O3), catalytic ozonation (O3/Fe2+) and peroxone (O3/H2O2) processes, under dark or UV radiation conditions, for the degradation of cytostatics of worldwide concern. The degradation of bicalutamide (a representative of recalcitrant cytostatics) was firstly assessed in batch and then in a tubular column reactor (continuous flow mode runs) using a wastewater treatment plant (WWTP) secondary effluent. Bicalutamide removal ranged between 66 % (O3) and 98 % (O3/H2O2/UV) in continuous flow mode runs, the peroxone process being the most effective. The performance of these processes was then assessed against a mixture of twelve cytostatics of worldwide concern spiked in the WWTP effluent (25-350 ng/L). After treatment, seven cytostatics were completely removed, whereas the five most recalcitrant ones were eliminated to an extent of 8-92 % in O3/H2O2, and 44-95 % in O3/H2O2/UV. Phytotoxicity tests revealed a noticeable reduction in the effluent toxicity, demonstrating the feasibility of these processes in realistic conditions as tertiary treatment.


Assuntos
Citostáticos , Ozônio , Poluentes Químicos da Água , Purificação da Água , Anilidas , Peróxido de Hidrogênio , Nitrilas , Oxirredução , Compostos de Tosil , Águas Residuárias , Água , Poluentes Químicos da Água/análise
2.
Molecules ; 26(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577031

RESUMO

Cytostatics are toxic pharmaceuticals, whose presence in surfaces puts healthcare workers at risk. These drugs might also end up in hospital effluents (HWW), potentially damaging aquatic ecosystems. Bicalutamide is a cytostatic extensively consumed worldwide, but few analytical methods exist for its quantification and most of them require advanced techniques, such as liquid chromatography mass spectrometry (LC-MS), which are very complex and expensive for large monitoring studies. Therefore, a simple but reliable multi-matrix high performance liquid chromatographic method, with fluorescence detection, was developed and validated to rapidly screen abnormal concentrations of bicalutamide in HWW and relevant contamination levels of bicalutamide in indoor surfaces (>100 pg/cm2), prior to confirmation by LC-MS. The method presents good linearity and relatively low method detection limits (HWW: 0.14 ng/mL; surfaces: 0.28 pg/cm2). Global uncertainty was below 20% for concentrations higher than 25 ng/mL (HWW) and 50 pg/cm2 (surfaces); global uncertainty was little affected by the matrix. Therefore, a multi-matrix assessment could be achieved with this method, thus contributing to a holistic quantification of bicalutamide along the cytostatic circuit. Bicalutamide was not detected in any of the grab samples from a Portuguese hospital, but an enlarged sampling is required to conclude about its occurrence and exposure risks.


Assuntos
Anilidas , Nitrilas , Compostos de Tosil , Cromatografia Líquida de Alta Pressão , Águas Residuárias/química
3.
Sci Total Environ ; 795: 148855, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34247083

RESUMO

As the number of cancer patients increases, so does the consumption of cytostatic drugs, which are commonly used in chemotherapy. These compounds are already ubiquitous in wastewater treatment plant (WWTP) effluents and natural water streams, revealing the urgent need for efficient technologies for their removal from the aqueous phase. This work presents the elimination of five cytostatics of concern, found in Portuguese WWTP effluents: bicalutamide (BICA), capecitabine (CAP), cyclophosphamide (CYC), ifosfamide (IFO) and mycophenolic acid (MPA), using non-catalytic ozonation. Experiments were performed starting from trace-level concentrations (1 µM) for all cytostatics at neutral pH (pH: 7.3 ± 0.1) and room temperature (23 ± 1 °C), employing different ozone dosages. Under the studied conditions, CAP and MPA were quickly eliminated by direct ozonation, whereas BICA, CYC and IFO were more slowly degraded, as they undergo a breakdown via hydroxyl radicals generation (HO) exclusively. Increasing the O3 dosage from 1 to 3 mgO3/mgDOC, CAP, MPA and IFO were completely removed, and BICA and CYC were converted more than 90% after 180 min. The presence of both inorganic ions and organic matter in real water matrices (river water, WWTP secondary effluent) did not affect the removal of CAP and MPA. Nonetheless, there was an inefficient and very fast O3 consumption that resulted in only around 30% elimination of BICA, CYC and IFO, even if the reaction time is extended.


Assuntos
Citostáticos , Ozônio , Poluentes Químicos da Água , Purificação da Água , Citostáticos/análise , Humanos , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise
4.
Environ Sci Pollut Res Int ; 25(28): 27748-27755, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29785599

RESUMO

This paper addresses the removal of four aromatic hydrocarbons typically found in petrochemical wastewater: benzene (B), toluene (T), o-xylene (X), and naphthalene (N), by microwave-assisted catalytic wet peroxide oxidation (MW-CWPO) using activated carbon (AC) as catalyst. Under the studied conditions, complete pollutant elimination (B, 1.28 mM; T, 1.09 mM; X, 0.94 mM; and N, 0.78 mM) was achieved, with more than 90% TOC removal after only 15-min reaction time, working at 120 °C, pH0 = 3, AC at 1 g L-1, and H2O2 at the stoichiometric dose. Furthermore, in the case of toluene, naphthalene, and xylene, the hydroxylation and breakdown of the ring is very rapid and toxic intermediates were not detected. The process follows two steps: (i) pollutant adsorption onto AC followed by (ii) adsorbed compounds oxidation. Thus, MW-CWPO with AC as catalyst appears a promising way for a fast and effective process for B, T, X, and N removal in aqueous phase.


Assuntos
Carvão Vegetal/química , Hidrocarbonetos Aromáticos/análise , Peróxido de Hidrogênio/química , Micro-Ondas , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Catálise , Oxirredução , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...